Friday 6 April 2018

Algoritmo genético python para sistema de negociação


Biblioteca de Negociação Algorítmica Python.
O PyAlgoTrade é uma Biblioteca de Negociação Algorítmica Python, com foco em backtesting e suporte para negociação de papéis e negociação ao vivo. Digamos que você tenha uma ideia para uma estratégia de negociação e gostaria de avaliá-la com dados históricos e ver como ela se comporta. O PyAlgoTrade permite que você faça isso com o mínimo de esforço.
Principais características.
Totalmente documentado. Evento dirigido. Suporta ordens Market, Limit, Stop e StopLimit. Suporta o Yahoo! Arquivos Finanças, Google Finance e NinjaTrader CSV. Suporta qualquer tipo de dados de séries temporais no formato CSV, por exemplo, o Quandl. Suporte de negociação Bitcoin através do Bitstamp. Indicadores técnicos e filtros como SMA, WMA, EMA, RSI, Bandas de Bollinger, expoente de Hurst e outros. Métricas de desempenho como a taxa de Sharpe e a análise de rebaixamento. Manipulando eventos do Twitter em tempo real. Criador de perfil de eventos. Integração TA-Lib.
Muito fácil de dimensionar horizontalmente, isto é, usando um ou mais computadores para fazer backtest de uma estratégia.
O PyAlgoTrade é gratuito, de código aberto e está licenciado sob a Licença Apache, Versão 2.0.

Algoritmo genético Python para sistema de negociação
Criando um sistema de negociação dentro do Trading System Lab.
O Trading System Lab gerará automaticamente Trading Systems em qualquer mercado em poucos minutos usando um programa de computador muito avançado conhecido como AIMGP (Indução Automática do Código de Máquina com Programação Genética). A criação de um sistema de negociação dentro do Trading System Lab é realizada em 3 etapas fáceis. Primeiro, é executado um pré-processador simples que extrai e pré-processa automaticamente os dados necessários do mercado com o qual deseja trabalhar. A TSL aceita dados CSI, MetaStock, AIQ, TradeStation, Internet grátis, ASCII, TXT, CSV, CompuTrac, DowJones, FutureSource, TeleChart2000v3, TechTools, XML, Binário e Internet Streaming. Em segundo lugar, o Trading System Generator (GP) é executado por vários minutos, ou mais, para evoluir um novo sistema de negociação. Você pode usar seus próprios dados, padrões, indicadores, relacionamentos entre mercados ou dados fundamentais no TSL. Em terceiro lugar, o Trading System evoluído é formatado para produzir novos sinais do Trading System a partir da TradeStation ™ ou de muitas outras plataformas de negociação. O TSL irá escrever automaticamente Easy Language, Java, Assembler, código C, código C # e WealthLab Script Language. O Sistema de Negociação pode então ser negociado manualmente, negociado através de um corretor ou negociado automaticamente. Você pode criar o Sistema de Negociação sozinho ou nós podemos fazer isso por você. Então, você ou seu corretor podem negociar o sistema manualmente ou automaticamente.
O Programa Genético do Trading System Lab contém vários recursos que reduzem a possibilidade de ajuste de curva ou a produção de um Sistema de Negociação que não continua a funcionar no futuro. Primeiro, os Trading Systems evoluídos têm seu tamanho reduzido ao menor tamanho possível através do que é chamado de pressão de parcimônia, a partir do conceito de comprimento de descrição mínima. Assim, o Sistema de Negociação resultante é o mais simples possível e geralmente se acredita que quanto mais simples for o Sistema de Negociação, melhor será o seu desempenho no futuro. Em segundo lugar, a aleatoriedade é introduzida no processo evolutivo, o que reduz a possibilidade de encontrar soluções que são localmente, mas não globalmente ótimas. A aleatoriedade é introduzida não apenas nas combinações do material genético usado nos Trading Systems evoluídos, mas também em Parsimony Pressure, Mutation, Crossover e outros parâmetros GP de nível superior. O teste Fora da Amostra é realizado enquanto o treinamento está em andamento com as informações estatísticas apresentadas nos testes In Sample e Out of Sample Trading System. Os logs de execução são apresentados ao usuário para os dados Treinamento, Validação e Fora da Amostra. Bem comportado O desempenho fora da amostra pode ser indicativo de que o Sistema de Negociação está evoluindo com características robustas. A deterioração substancial no teste automático Fora da Amostra em comparação com o teste Na Amostra pode implicar que a criação de um Sistema de Negociação robusto está em dúvida ou que o Terminal, ou Conjunto de Entrada, pode precisar ser alterado. Por fim, o Conjunto de Terminais é cuidadosamente escolhido de modo a não influenciar excessivamente a seleção do material genético inicial em relação a qualquer tendência ou sentimento específico do mercado.
A TSL não inicia sua execução com um Sistema de Negociação predefinido. Na verdade, apenas o Input Set e uma seleção de modos de entrada de mercado ou modos, para pesquisa e atribuição automática de entrada, são feitos inicialmente. Um padrão ou comportamento indicador que pode ser considerado uma situação de alta pode ser usado, descartado ou invertido dentro do GP. Nenhum padrão ou indicador é pré-atribuído a qualquer viés de movimento de mercado específico. Este é um afastamento radical do desenvolvimento do Trading System gerado manualmente.
Um Sistema de Negociação é um conjunto lógico de instruções que informa ao comerciante quando comprar ou vender um mercado em particular. Estas instruções raramente requerem intervenção de um profissional. Os Sistemas de Negociação podem ser negociados manualmente, observando as instruções de negociação em uma tela de computador, ou podem ser negociados permitindo que o computador entre no mercado automaticamente. Ambos os métodos estão em uso generalizado hoje. Há mais administradores profissionais de dinheiro que se consideram comerciantes "Sistemáticos ou Mecânicos" do que aqueles que se consideram "discricionários", e o desempenho dos administradores de recursos sistemáticos é geralmente superior ao dos administradores de dinheiro discricionários. Estudos têm mostrado que as contas de negociação geralmente perdem dinheiro com mais frequência se o cliente não estiver usando um sistema de negociação. O aumento significativo nos Sistemas de Negociação nos últimos 10 anos é evidente especialmente nas corretoras de commodities, no entanto, as corretoras de ações e ações estão se tornando cada vez mais conscientes dos benefícios através do uso de Sistemas de Negociação e algumas começaram a oferecer Sistemas de Negociação aos seus clientes de varejo.
A maioria dos gestores de fundos mútuos já está usando algoritmos de computador sofisticados para orientar suas decisões sobre o que "estoque a escolher" ou que "rotação setorial" é a favor. Computadores e algoritmos se tornaram mainstream no investimento e esperamos que essa tendência continue enquanto os investidores mais experientes em informática continuam a permitir que parcelas de seu dinheiro sejam gerenciadas pela Trading Systems para reduzir o risco e aumentar os retornos. As enormes perdas experimentadas pelos investidores que participam na compra e manutenção de ações e fundos mútuos como o mercado de ações derretido nos últimos anos está promovendo esse movimento no sentido de uma abordagem mais disciplinada e lógica para o investimento no mercado de ações. O investidor médio percebe que atualmente ele permite que muitos aspectos de suas vidas e as vidas de seus entes queridos sejam mantidos ou controlados por computadores, como os automóveis e aeronaves que usamos para o transporte, os equipamentos de diagnóstico médico que usamos para a manutenção da saúde, os controladores de aquecimento e refrigeração que usamos para controle de temperatura, as redes que usamos para informações baseadas na Internet, até mesmo os jogos que jogamos para entretenimento. Por que então alguns investidores de varejo acreditam que podem "atirar nos quadris" em suas decisões sobre "o que" ações ou fundo mútuo para comprar ou vender e esperar ganhar dinheiro? Finalmente, o investidor médio tornou-se cauteloso com os conselhos e informações encaminhados por corretores inescrupulosos, contadores, diretores de empresas e consultores financeiros.
Nos últimos 20 anos, matemáticos e desenvolvedores de software buscaram indicadores e padrões nos mercados de ações e commodities em busca de informações que apontassem para a direção do mercado. Esta informação pode ser usada para melhorar o desempenho dos Sistemas de Negociação. Geralmente este processo de descoberta é realizado através de uma combinação de tentativa e erro e mais sofisticada "Data Mining". Normalmente, o desenvolvedor levará semanas ou meses processando os números para produzir um Sistema de Negociação em potencial. Muitas vezes, este sistema de negociação não terá um bom desempenho quando realmente usado no futuro, devido ao que é chamado de "ajuste de curva". Ao longo dos anos tem havido muitos Trading Systems (e empresas de desenvolvimento de Trading System) que vêm e vão como seus sistemas falharam em negociação ao vivo. Desenvolver Sistemas Comerciais que continuem a atuar no futuro é difícil, mas não impossível de realizar, embora nenhum desenvolvedor ético ou gestor de dinheiro dê uma garantia incondicional de que qualquer Sistema de Negociação, ou mesmo qualquer ação, título ou fundo mútuo, continuará. para produzir lucros para o futuro para sempre.
O que levou semanas ou meses para o desenvolvedor do Trading System produzir no passado pode agora ser produzido em minutos com o uso do Trading System Lab. O Trading System Lab é uma plataforma para a geração automática de Sistemas de Negociação e Indicadores de Negociação. A TSL utiliza um Mecanismo de Programação Genética de alta velocidade e produzirá Sistemas de Negociação a uma taxa de mais de 16 milhões de barras de sistema por segundo, com base em 56 entradas. Observe que apenas algumas entradas serão realmente usadas ou necessárias, resultando em estruturas de estratégia geralmente simples e evoluídas. Com aproximadamente 40.000 a 200.000 sistemas necessários para uma convergência, o tempo de convergência para qualquer conjunto de dados pode ser aproximado. Note que não estamos simplesmente executando uma otimização de força bruta de indicadores existentes procurando por parâmetros ótimos a partir dos quais usar em um Sistema de Negociação já estruturado. O Gerador de Sistema de Negociação começa em uma origem de ponto zero, não fazendo suposições sobre o movimento do mercado no futuro e então "evolui" sistemas de negociação a uma taxa muito alta combinando informações presentes no mercado e formulando novos filtros, funções, condições e relacionamentos à medida que avança em direção a um Sistema de Negociação "geneticamente modificado". O resultado é que um excelente Sistema de Negociação pode ser gerado em poucos minutos em 20 a 30 anos de dados diários de mercado em praticamente qualquer mercado.
Nos últimos anos, tem havido várias abordagens para a otimização do Sistema de Negociação que empregam o "Algoritmo" Genético menos poderoso. Os Programas Genéticos (GPs) são superiores aos Algoritmos Genéticos (GA's) por várias razões. Primeiro, os GP's convergem em uma solução a uma taxa exponencial (muito rápida e ficando mais rápida) enquanto os Algoritmos Genéticos convergem a uma taxa linear (muito mais lenta e não ficando mais rápida). Em segundo lugar, as GP's geram realmente um código de máquina do Sistema de Negociação que combina o material genético (indicadores, padrões, dados entre mercados) de maneiras únicas. Essas combinações exclusivas podem não ser intuitivamente óbvias e não exigem definições iniciais pelo desenvolvedor do sistema. As relações matemáticas únicas criadas podem se tornar novos indicadores ou variantes na Análise Técnica, ainda não desenvolvidas ou descobertas. Os GAs, por outro lado, simplesmente procuram soluções ótimas à medida que progridem ao longo da faixa de parâmetros; eles não descobrem novas relações matemáticas e não escrevem seu próprio código de sistema de negociação. O código de criação do Trading System da GP de vários comprimentos, usando genomas de tamanho variável, modificará o comprimento do Sistema de Negociação através do que é chamado crossover não homólogo e descartará completamente um indicador ou padrão que não contribua para a eficiência do Sistema de Negociação. Os GA's usam apenas blocos de instrução de tamanho fixo, fazendo uso somente de crossover homólogo e não produzem códigos de Sistema de negociação de comprimento variável, nem descartarão um indicador ou padrão ineficiente tão facilmente quanto um GP. Finalmente, os Programas Genéticos são um avanço recente no domínio do aprendizado de máquina, enquanto os Algoritmos Genéticos foram descobertos há 30 anos. Os programas genéticos incluem todas as principais funcionalidades dos Algoritmos Genéticos; crossover, reprodução, mutação e fitness, no entanto, as GP's incluem recursos muito mais rápidos e robustos, tornando a GP a melhor escolha para a produção da Trading Systems. O GP empregado no Trading System Generator da TSL é o GP mais rápido atualmente disponível e não está disponível em nenhum outro software do mercado financeiro no mundo.
O Algoritmo de Programação Genética, o Simulador de Negociação e os Motores de Fitness usados ​​na TSL levaram mais de 8 anos para serem produzidos.
O Trading System Lab é o resultado de anos de trabalho duro de uma equipe de engenheiros, cientistas, programadores e traders, e acreditamos que representa a tecnologia mais avançada disponível atualmente para a negociação nos mercados.

Usando a programação genética para evoluir estratégias de negociação.
Recentemente, um amigo e eu trabalhamos juntos em uma tarefa de pesquisa na qual utilizamos com sucesso a Programação Genética (GP) para desenvolver soluções para um problema de classificação financeira do mundo real. Esse problema, chamado análise de segurança, envolve determinar quais títulos devem ser comprados para obter um bom retorno sobre o investimento no futuro. Para encontrar uma solução para esse problema, usamos a Programação Genética para desenvolver uma população de árvores de decisão que poderia realizar análises de segurança em 62 das ações de tecnologia listadas no S & P 500. Ou seja, desenvolvemos árvores de decisão capazes de classificar essas ações de acordo com se eles devem ser comprados ou vendidos a descoberto.
Árvores de Decisão de Análise de Segurança.
Durante o estudo, desenvolvemos dois tipos de árvores de decisão de análise de segurança. A primeira utilizou apenas indicadores da análise fundamental e a segunda utilizou apenas indicadores da análise técnica. A análise fundamental é um método de avaliar uma segurança para medir seu valor intrínseco examinando fatores econômicos, financeiros e outros fatores qualitativos e quantitativos relacionados. A análise técnica é um método de avaliação de títulos, analisando as estatísticas geradas pela atividade de mercado.
Uma estratégia para análise de segurança, independentemente de usar indicadores técnicos ou fundamentais, consistirá em várias regras para tomar decisões de investimento. Essa estratégia pode ser representada como uma árvore de decisão em que os nós terminais representam decisões de investimento e os nós funcionais representam regras baseadas em indicadores técnicos ou fundamentais. Devido a este fato, muitas estratégias de investimento existentes são representadas na forma de árvores de decisão.
No total, quarenta e dois indicadores diferentes foram selecionados e utilizados a partir de análise técnica e análise fundamentalista. As estratégias evoluídas foram para um período fixo de retenção de três meses, seis meses, nove meses ou doze meses de duração. As árvores de decisão foram testadas novamente usando dados de mercado de 2011 a 2013.
Programação Genética.
Programação Genética é uma especialização de um Algoritmo Genético. Algoritmos genéticos são baseados na população, o que significa que eles operam dentro de uma população composta por muitos indivíduos diferentes. Cada indivíduo é representado por um genótipo único (geralmente codificado como um vetor). Algoritmos Genéticos modelam o processo de evolução genética através de um número de operadores incluindo o operador de seleção que modela a sobrevivência do mais apto, o operador de crossover que modela a reprodução sexual e o operador de mutação que modela as mutações genéticas que ocorrem aleatoriamente para indivíduos em uma população. Esses operadores, quando combinados, produzem o que os cientistas da computação chamam de Algoritmo Genético.
Os três operadores de um Algoritmo Genético aplicado a uma população de vetores (blocos)
A diferença entre um Algoritmo Genético e o Algoritmo de Programação Genética é a maneira pela qual os genótipos individuais são representados. Nos genótipos de Algoritmos Genéticos são representados tanto como Strings quanto como Vetores, enquanto na Genetic Programming esses genótipos são representados usando estruturas de dados em árvore. A operação de cruzamento em estruturas de árvore pode acontecer de algumas maneiras, uma subárvore é trocada, um nó de folha é removido ou alterado ou os valores de algum nó são ajustados. Uma ilustração disso é mostrada abaixo,
Este diagrama descreve a estratégia de cruzamento de uma árvore de decisão usada pela programação genética para análise de segurança.
Após este estudo, concluímos que a Programação Genética tem um grande potencial para desenvolver novas estratégias de análise de segurança e gestão de investimentos, desde que sejam obtidas melhores funções para calcular a adequação. Ao longo de nossa pesquisa, vimos que as árvores de decisão evoluídas usando a Programação Genética foram capazes de produzir classificações de ações que superaram consistentemente o retorno médio do mercado ao longo dos quatro trimestres. Isso é verdade para as árvores de decisão que usaram indicadores técnicos, bem como árvores de decisão que usaram indicadores fundamentais. Diversas outras conclusões foram derivadas de nossa pesquisa, incluindo os tamanhos e o nível ideais de heterogeneidade para as árvores de decisão e o valor agregado pelos diferentes indicadores e o desempenho das estratégias em relação um ao outro. Alguns resultados estão incluídos abaixo.
Relação entre o tamanho da árvore de decisão e a adequação Indicadores mais populares usados ​​na árvore de decisão final.
Tamanhos médios de árvore por iteração Exemplo Exemplo de Árvore de Decisão de Análise de Segurança Árvore de Decisão de Análise de Segurança.
Conclusão.
Dois relatórios de pesquisa independentes foram produzidos por mim e por meu amigo. Ambos os relatórios apresentam muito mais detalhes sobre o nosso estudo de pesquisa, a abordagem adotada, nosso projeto e implementação, as estratégias de teste que usamos, nossas conclusões e recomendações para futuras pesquisas. Você também pode baixar uma cópia do código-fonte criado durante a implementação. Para meus colegas mais técnicos do projeto, por favor clique aqui.
História anterior
Clustering usando o Ant Colony Optimization.
Próxima história.
Sistemas Inteligentes de Negociação Algorítmica.
[Comentário copiado do LinkedIn Computational Finance Group]
Muito bom trabalho. O escrever é lindo também.
Eu só tive a chance de olhar para o relatório. Algumas estatísticas que seria bom analisar: como a sua carteira de GA se compara a portfólios dos mesmos ativos. Eu olharia para dois portfólios de comparação: um portfólio ponderado igual e um portfólio de estilo S & amp; P que é ponderado pela capitalização de mercado.
Como se vê, pode ser surpreendentemente difícil superar um portfólio igualmente ponderado. Reequilibre as carteiras trimestralmente, uma vez que algumas ações irão subir e algumas cairão (por exemplo, você deseja manter os pesos da carteira iguais, à medida que os preços mudam). Se o seu algoritmo genético bate esses portfólios, então você tem "alfa" (excesso de retorno sobre o benchmark).
Claro que alfa não é tudo. Você deve observar a Perda Esperada de Cauda (ETL) (também conhecida como CVaR, Expected Shortfall) para a carteira GA e o "benchmark". Se você tem menos risco para o mesmo retorno, então você pode considerar que você bateu o benchmark. A medida de ETL é uma medida melhor do que o índice de Sharpe quando se trata de risco, uma vez que o índice de Sharpe mede a variação, que é de dois lados. O ETL mede apenas a perda.
Uma observação: um problema com GA e redes neurais (NN) é que são caixas pretas. É difícil determinar por que eles fazem as "escolhas" que fazem. Então imagine que você é um gerente de portfólio. Seu GA ou NN começa a ter um desempenho ruim. Que passos você pode dar para resolver isso? O problema é que tudo o que você realmente pode fazer é reciclar e não sabe se o treinamento será melhor. É claro que com uma árvore de decisão não é tão ruim, já que pelo menos você sabe quais decisões ela tomou. O problema é que, se você está constantemente mexendo para tomar as decisões certas, então você também tem um problema.
Esses problemas são motivos pelos quais você não vê muito esses algoritmos (embora eles sejam usados).
[Resposta copiada do LinkedIn Computational Finance Group]
Obrigado pelas palavras complementares Ian, agradecemos que você tenha interesse em nossa pesquisa e nos forneça alguns comentários interessantes.
Em nossa abordagem, apenas comparamos o desempenho das seleções de ações feitas por nossas árvores de decisão com um portfólio igualmente ponderado. Estender nossa pesquisa para incorporar diferentes portfólios é uma ideia interessante que será acompanhada durante a próxima fase de desenvolvimento. Também estamos considerando implementar algumas das abordagens bem conhecidas para análise de segurança a serem usadas como benchmarks de desempenho adicionais. Se você ou alguém tiver sugestões sobre quais abordagens podem ser boas referências, informe-nos.
Seus comentários sobre o uso de outras medidas de desempenho estão corretos. Gostaríamos, definitivamente, de olhar para a estrutura de teste de retorno e investigar formas de torná-lo mais rigoroso e menos propenso a ajustes excessivos. Também gostaríamos de implementar funções de adequação adicionais que levem em consideração medidas de risco de portfólio, bem como medidas de excesso de retorno (alfa). Examinarei as medidas que você mencionou e veremos como podemos incorporá-las melhor em nossa estrutura existente. Também estaremos considerando como seria possível usar um framework de back-testing open source como o ZipLine, a estrutura de back-testing usada pelo quantopian.
Suas observações sobre a natureza e o uso de redes neurais e geográficas em finanças são muito interessantes. O desafio de tornar esses algoritmos mais transparentes e, francamente, um pouco menos assustador, não é para ser tomado de ânimo leve. Meu colega está atualmente trabalhando em uma tarefa de pesquisa em que ele está tentando levantar o véu em alguns dos trabalhos internos das Redes Neurais. Se ele for bem-sucedido, em vez de precisar treinar redes neurais constantemente quando algo der errado, ele poderá isolar a causa do problema na rede neural e adaptar sua arquitetura de acordo. Ele está pensando em usar uma aplicação financeira do mundo real das Redes Neurais em sua pesquisa. Então, se você tem alguma idéia sobre isso, por favor me avise?
Pessoalmente falando, estou atualmente trabalhando em uma tarefa de pesquisa em que estou tentando construir uma estrutura algorítmica para a seleção e otimização de portfólios de carry trade. Ele faz uso de alguns algoritmos de Inteligência Computacional e daqui para frente vou ter em mente os problemas que você mencionou. Tentarei identificar formas de mitigar ou eliminar essas preocupações no quadro. Obrigado novamente por todos os seus comentários, agradecemos o feedback. Se você tiver mais alguma boa ideia, entre em contato conosco.
[Comentário copiado do LinkedIn Computational Finance Group]
Acho que a abordagem mais razoável para o backtesting é comparar seus resultados com o que acontece com negociações aleatórias que ainda obedecem a quaisquer restrições que você esteja impondo ao portfólio. Isso é discutido em:
[Resposta copiada do LinkedIn Computational Finance Group]
Obrigado Patrick, essa é uma boa sugestão. Eu entendo a abordagem porque o conceito de backtesting um algoritmo contra uma estratégia de negociação aleatória é conceitualmente semelhante ao teste de um algoritmo de pesquisa contra a pesquisa aleatória. Que é algo que eu fiz antes. Quão popular você diria que a estratégia de backtesting é?
[Resposta copiada do LinkedIn Computational Finance Group]
Stuart: Depressivamente impopular. Mas tem que começar em algum lugar.
[Comentário copiado do LinkedIn Computational Finance Group]
Parece bom, qual é a razão de usar as 62 ações de tecnologia, não 500 ações?
[Cópias de respostas do Grupo de Finanças Computacionais do LinkedIn]
Oi JZ, essa é uma boa pergunta e estou feliz que você tenha perguntado. Debatemos nossa abordagem e uma opinião externa seria muito apreciada. Limitamos nossa amostra de teste a apenas um setor por dois motivos:
1) Acreditamos que as árvores de decisão que usam indicadores fundamentais podem variar drasticamente entre os diferentes setores. Isso ocorre porque o índice financeiro pode variar entre os diferentes setores e achamos que um investidor que usa essa abordagem gostaria de desenvolver árvores de decisão para cada setor de forma independente. ** e.
2) Nós só recebemos três semanas para concluir a tarefa e estávamos preocupados que a adição de mais estoques fosse muito demorada. Isso se tornou uma preocupação infundada, já que nossa implementação poderia lidar facilmente com todas as 500 ações da S & P500, sem problemas significativos de desempenho.
** Nota: isto não se aplica a árvores de decisão usando indicadores de Análise Técnica.
Extremamente interessante. Bem feito Stuart.
É um exercício interessante, mas não vejo qual vantagem o GP tem contra simplesmente treinar o Decision Tree usando alguma medida de impureza. Parece que faz o mesmo de forma muito ineficiente e provavelmente com menos precisão também.
Oi Ignas, para ser perfeitamente honesto, o GP sofre de muitas desvantagens e a técnica ainda está sendo aperfeiçoada. Dito isto, os métodos tradicionais de indução de árvores de decisão (dos quais eu sou mais recentemente fã) também têm suas desvantagens que podem (ou não) ser superadas pela Programação Genética.
Eu estou tentando re implementar o GA em python. Quais são algumas bibliotecas python que você recomendaria.
Você já tentou trocar seu sistema ao vivo?
Oi Lawrence, infelizmente não. Este post é bastante um número de anos e representa um antigo projeto do time do colégio :-). Eu recomendaria dar uma olhada no Genotick para uma estratégia de negociação baseada em programação genética imparcial. Eu acredito que as pessoas estão negociando isso ao vivo.
Envie um comentário.
Cancelar resposta.
Siga Turing Finance.
Turing Finance Mailing List.
Amigos da Turing Finance.
A Quantocracia é o melhor agregador de blogs de finanças quantitativas com links para novas análises publicadas todos os dias.
NMRQL é o fundo de hedge quantitativo do qual faço parte. Usamos o aprendizado de máquina para tentar vencer o mercado.

Algoritmo genético Python para sistema de negociação
Se você é um comerciante ou um investidor e gostaria de adquirir um conjunto de habilidades de negociação quantitativa, você está no lugar certo.
O curso de Negociação com o Python fornecerá as melhores ferramentas e práticas para pesquisa de negociação quantitativa, incluindo funções e scripts escritos por especialistas em negociações quantitativas. O curso dá o máximo impacto ao seu tempo e dinheiro investidos. Centra-se na aplicação prática da programação à negociação, em vez da informática teórica. O curso se pagará rapidamente economizando seu tempo no processamento manual de dados. Você passará mais tempo pesquisando sua estratégia e implementando negociações lucrativas.
Visão geral do curso.
Parte 1: Noções básicas Você aprenderá por que o Python é uma ferramenta ideal para negociações quantitativas. Começaremos configurando um ambiente de desenvolvimento e, em seguida, apresentaremos as bibliotecas científicas.
Parte 2: Manipulando os dados Aprenda como obter dados de várias fontes gratuitas como Yahoo Finance, CBOE e outros sites. Leia e escreva vários formatos de dados, incluindo arquivos CSV e Excel.
Parte 3: Pesquisando estratégias Aprenda a calcular P & L e acompanhar as métricas de desempenho como Sharpe e Drawdown. Construa uma estratégia de negociação e otimize seu desempenho. Vários exemplos de estratégias são discutidos nesta parte.
Parte 4: Indo ao vivo! Esta parte é centralizada em torno da API Interactive Brokers. Você aprenderá como obter dados de estoque em tempo real e fazer pedidos ao vivo.
Muito código de exemplo.
O material do curso consiste em 'cadernos' que contêm texto juntamente com código interativo como este. Você poderá aprender interagindo com o código e modificando-o ao seu gosto. Será um ótimo ponto de partida para escrever suas próprias estratégias.
Embora alguns tópicos sejam explicados detalhadamente para ajudá-lo a entender os conceitos subjacentes, na maioria dos casos você não precisará escrever seu próprio código de baixo nível, devido ao suporte de bibliotecas de código aberto existentes:
A biblioteca TradingWithPython combina grande parte da funcionalidade discutida neste curso como uma função pronta para uso e será usada durante todo o curso. Os pandas fornecerão a você todo o poder de levantamento pesado necessário para a compactação de dados.
Todo o código é fornecido sob a licença BSD, permitindo seu uso em aplicações comerciais.
Classificação do curso.
Um piloto do curso foi realizado na primavera de 2013, isso é o que os alunos puderam dizer:
Matej curso bem planejado e bom treinador. Definitivamente vale seu preço e meu tempo Lave Jev obviamente sabia suas coisas. A profundidade da cobertura foi perfeita. Se Jev executar algo assim novamente, eu serei o primeiro a me inscrever. John Phillips Seu curso realmente me fez começar a considerar o python para análise de sistemas de estoque.

Melhor Linguagem de Programação para Sistemas de Negociação Algorítmica?
Melhor Linguagem de Programação para Sistemas de Negociação Algorítmica?
Uma das perguntas mais freqüentes que recebo no mailbag do QS é "Qual é a melhor linguagem de programação para negociação algorítmica?". A resposta curta é que não há "melhor" linguagem. Parâmetros de estratégia, desempenho, modularidade, desenvolvimento, resiliência e custo devem ser considerados. Este artigo descreverá os componentes necessários de uma arquitetura de sistema de comércio algorítmico e como as decisões relativas à implementação afetam a escolha da linguagem.
Primeiramente, os principais componentes de um sistema de negociação algorítmica serão considerados, como as ferramentas de pesquisa, o otimizador de portfólio, o gerenciador de risco e o mecanismo de execução. Posteriormente, diferentes estratégias de negociação serão examinadas e como elas afetam o design do sistema. Em particular, a frequência de negociação e o volume de negociação provável serão ambos discutidos.
Uma vez que a estratégia de negociação tenha sido selecionada, é necessário arquitetar todo o sistema. Isso inclui a escolha de hardware, o sistema operacional e a resiliência do sistema contra eventos raros e potencialmente catastróficos. Enquanto a arquitetura está sendo considerada, a devida atenção deve ser dada ao desempenho - tanto para as ferramentas de pesquisa quanto para o ambiente de execução ao vivo.
Qual é o sistema de negociação tentando fazer?
Antes de decidir sobre a "melhor" linguagem com a qual escrever um sistema de negociação automatizado, é necessário definir os requisitos. O sistema será puramente baseado em execução? O sistema exigirá um módulo de gerenciamento de risco ou de construção de portfólio? O sistema exigirá um backtester de alto desempenho? Para a maioria das estratégias, o sistema de negociação pode ser particionado em duas categorias: Pesquisa e geração de sinais.
A pesquisa está preocupada com a avaliação de um desempenho da estratégia em relação aos dados históricos. O processo de avaliação de uma estratégia de negociação sobre dados de mercado anteriores é conhecido como backtesting. O tamanho dos dados e a complexidade algorítmica terão um grande impacto na intensidade computacional do backtester. A velocidade e a simultaneidade da CPU costumam ser os fatores limitantes na otimização da velocidade de execução da pesquisa.
A geração de sinais preocupa-se em gerar um conjunto de sinais de negociação de um algoritmo e enviar esses pedidos ao mercado, geralmente por meio de uma corretora. Para determinadas estratégias, é necessário um alto nível de desempenho. Problemas de E / S, como largura de banda de rede e latência, são muitas vezes o fator limitante na otimização de sistemas de execução. Assim, a escolha de idiomas para cada componente de todo o seu sistema pode ser bem diferente.
Tipo, Frequência e Volume de Estratégia.
O tipo de estratégia algorítmica empregada terá um impacto substancial no design do sistema. Será necessário considerar os mercados que estão sendo negociados, a conectividade com fornecedores de dados externos, a frequência e o volume da estratégia, o tradeoff entre facilidade de desenvolvimento e otimização de desempenho, bem como qualquer hardware personalizado, incluindo customização co-localizada servidores, GPUs ou FPGAs que possam ser necessários.
As escolhas tecnológicas para uma estratégia de ações norte-americanas de baixa frequência serão muito diferentes daquelas de uma negociação de estratégia de arbitragem estatística de alta frequência no mercado de futuros. Antes da escolha da linguagem, muitos fornecedores de dados devem ser avaliados quanto à estratégia em questão.
Será necessário considerar a conectividade com o fornecedor, a estrutura de quaisquer APIs, a pontualidade dos dados, os requisitos de armazenamento e a resiliência em face de um fornecedor ficar off-line. Também é aconselhável ter acesso rápido a vários fornecedores! Vários instrumentos têm suas próprias peculiaridades de armazenamento, exemplos dos quais incluem vários símbolos de ticker para ações e datas de vencimento para futuros (para não mencionar quaisquer dados OTC específicos). Isso precisa ser levado em conta no design da plataforma.
A frequência da estratégia é provavelmente um dos maiores impulsionadores de como a pilha de tecnologia será definida. Estratégias que empregam dados com mais freqüência do que minuciosamente ou em segundo lugar exigem consideração significativa com relação ao desempenho.
Uma estratégia que excede as segundas barras (isto é, dados de ticks) leva a um design orientado pelo desempenho como o requisito primário. Para estratégias de alta frequência, uma quantidade substancial de dados de mercado precisará ser armazenada e avaliada. Softwares como HDF5 ou kdb + são comumente usados ​​para essas funções.
Para processar os volumes extensos de dados necessários para aplicativos HFT, um backtester e um sistema de execução extensivamente otimizados devem ser usados. C / C ++ (possivelmente com algum montador) é provável que seja o candidato a idioma mais forte. Estratégias de frequência ultra-alta quase certamente exigirão hardware customizado, como FPGAs, co-location de troca e ajuste de interface de rede / kernal.
Sistemas de pesquisa.
Os sistemas de pesquisa geralmente envolvem uma mistura de desenvolvimento interativo e scripts automatizados. O primeiro ocorre com frequência dentro de um IDE, como o Visual Studio, o MatLab ou o R Studio. Este último envolve extensos cálculos numéricos sobre numerosos parâmetros e pontos de dados. Isso leva a uma escolha de idioma que fornece um ambiente simples para testar o código, mas também fornece desempenho suficiente para avaliar as estratégias em várias dimensões de parâmetro.
IDEs típicos nesse espaço incluem o Microsoft Visual C ++ / C #, que contém extensos utilitários de depuração, recursos de conclusão de código (via "Intellisense") e visões gerais simples da pilha inteira do projeto (via banco de dados ORM, LINQ); MatLab, que é projetado para extensa álgebra linear numérica e operações vetorizadas, mas de uma forma de console interativo; R Studio, que envolve o console de linguagem estatística R em um IDE completo; Eclipse IDE para Linux Java e C ++; e IDEs semi-proprietários como o Enthought Canopy for Python, que incluem bibliotecas de análise de dados como NumPy, SciPy, scikit-learn e pandas em um único ambiente interativo (console).
Para backtesting numérico, todos os idiomas acima são adequados, embora não seja necessário utilizar uma GUI / IDE, pois o código será executado "em segundo plano". A consideração principal neste estágio é a velocidade de execução. Uma linguagem compilada (como C ++) é geralmente útil se as dimensões do parâmetro de backtesting forem grandes. Lembre-se que é necessário ter cuidado com esses sistemas, se for esse o caso!
Linguagens interpretadas, como Python, geralmente usam bibliotecas de alto desempenho como o NumPy / pandas para a etapa de backtesting, a fim de manter um grau razoável de competitividade com equivalentes compilados. Em última análise, a linguagem escolhida para o backtesting será determinada por necessidades algorítmicas específicas, bem como o leque de bibliotecas disponíveis na linguagem (mais sobre isso abaixo). No entanto, a linguagem usada para os ambientes de backtester e de pesquisa pode ser completamente independente daquelas usadas nos componentes de construção de portfólio, gerenciamento de risco e execução, como será visto.
Construção de Carteira e Gestão de Risco.
Os componentes de gerenciamento de risco e de construção de portfólio são frequentemente negligenciados pelos traders algorítmicos de varejo. Isso é quase sempre um erro. Essas ferramentas fornecem o mecanismo pelo qual o capital será preservado. Eles não apenas tentam aliviar o número de apostas "arriscadas", mas também minimizam a rotatividade dos negócios, reduzindo os custos de transação.
Versões sofisticadas desses componentes podem ter um efeito significativo na qualidade e consistência da lucratividade. É fácil criar uma estratégia estável, pois o mecanismo de construção de portfólio e o gerenciador de risco podem ser facilmente modificados para lidar com vários sistemas. Assim, eles devem ser considerados componentes essenciais no início do projeto de um sistema de negociação algorítmica.
O trabalho do sistema de construção de portfólio é pegar um conjunto de negócios desejados e produzir o conjunto de negociações reais que minimizam o churn, manter exposições a vários fatores (como setores, classes de ativos, volatilidade, etc.) e otimizar a alocação de capital para vários estratégias em um portfólio.
A construção de portfólio geralmente se reduz a um problema de álgebra linear (como uma fatoração de matriz) e, portanto, o desempenho é altamente dependente da eficácia da implementação da álgebra linear numérica disponível. Bibliotecas comuns incluem uBLAS, LAPACK e NAG para C ++. O MatLab também possui operações de matriz amplamente otimizadas. O Python utiliza o NumPy / SciPy para tais cálculos. Um portfólio freqüentemente reequilibrado exigirá uma biblioteca matricial compilada (e bem otimizada!) Para realizar este passo, de modo a não afunilar o sistema de negociação.
O gerenciamento de riscos é outra parte extremamente importante de um sistema de negociação algorítmica. O risco pode vir de várias formas: aumento da volatilidade (embora isso possa ser visto como desejável para certas estratégias!), Aumento de correlações entre classes de ativos, inadimplência de terceiros, paralisações de servidores, eventos "black swan" e erros não detectados no código de negociação. para nomear alguns.
Os componentes de gerenciamento de risco tentam antecipar os efeitos da volatilidade excessiva e correlação entre as classes de ativos e seus efeitos subseqüentes sobre o capital comercial. Muitas vezes, isso reduz a um conjunto de cálculos estatísticos, como os "testes de estresse" de Monte Carlo. Isso é muito semelhante às necessidades computacionais de um mecanismo de precificação de derivativos e, como tal, será vinculado à CPU. Estas simulações são altamente paralelizáveis ​​(veja abaixo) e, até certo ponto, é possível "lançar hardware no problema".
Sistemas de Execução.
O trabalho do sistema de execução é receber sinais de negociação filtrados dos componentes de construção de carteira e gerenciamento de risco e enviá-los para uma corretora ou outros meios de acesso ao mercado. Para a maioria das estratégias de negociação algorítmica de varejo, isso envolve uma conexão API ou FIX para uma corretora como a Interactive Brokers. As principais considerações ao decidir sobre uma linguagem incluem a qualidade da API, a disponibilidade do wrapper de idioma para uma API, a frequência de execução e o escorregamento previsto.
A "qualidade" da API refere-se a quão bem documentada ela é, que tipo de desempenho ela fornece, se precisa de software independente para ser acessado ou se um gateway pode ser estabelecido de maneira sem cabeça (ou seja, sem GUI). No caso dos Interactive Brokers, a ferramenta Trader WorkStation precisa estar em execução em um ambiente GUI para acessar sua API. Certa vez, tive que instalar uma edição Ubuntu Desktop em um servidor de nuvem da Amazon para acessar remotamente o Interactive Brokers, puramente por esse motivo!
A maioria das APIs fornecerá uma interface C ++ e / ou Java. Geralmente, cabe à comunidade desenvolver wrappers específicos de linguagem para C #, Python, R, Excel e MatLab. Observe que, com cada plug-in adicional utilizado (especialmente os wrappers de APIs), há escopo para os bugs se infiltrarem no sistema. Sempre teste plugins desse tipo e garanta que eles sejam ativamente mantidos. Um indicador que vale a pena é ver quantas novas atualizações para uma base de código foram feitas nos últimos meses.
Freqüência de execução é da maior importância no algoritmo de execução. Observe que centenas de pedidos podem ser enviados a cada minuto e, como tal, o desempenho é crítico. A derrapagem será incorrida através de um sistema de execução com péssimo desempenho e isso terá um impacto dramático na lucratividade.
As linguagens com tipagem estática (veja abaixo) como C ++ / Java são geralmente ótimas para execução, mas há um compromisso em tempo de desenvolvimento, teste e facilidade de manutenção. Linguagens dinamicamente tipificadas, como Python e Perl, são geralmente "rápidas o suficiente". Certifique-se sempre de que os componentes são projetados de maneira modular (veja abaixo) para que possam ser "trocados" conforme o sistema é dimensionado.
Planejamento arquitetônico e processo de desenvolvimento.
Os componentes de um sistema de negociação, seus requisitos de frequência e volume foram discutidos acima, mas a infra-estrutura do sistema ainda não foi coberta. Aqueles que atuam como comerciantes de varejo ou que trabalham em um fundo pequeno provavelmente estarão "usando muitos chapéus". Será necessário estar cobrindo o modelo alfa, os parâmetros de gerenciamento e execução de riscos, e também a implementação final do sistema. Antes de aprofundar em linguagens específicas, o design de uma arquitetura de sistema ideal será discutido.
Separação de preocupações.
Uma das decisões mais importantes que devem ser tomadas no início é como "separar as preocupações" de um sistema de negociação. No desenvolvimento de software, isso significa essencialmente dividir os diferentes aspectos do sistema de negociação em componentes modulares separados.
Ao expor interfaces em cada um dos componentes, é fácil trocar partes do sistema por outras versões que auxiliem o desempenho, a confiabilidade ou a manutenção, sem modificar nenhum código de dependência externo. Essa é a "melhor prática" para esses sistemas. Para estratégias em freqüências mais baixas, tais práticas são recomendadas. Para negociação de ultra alta frequência, o livro de regras pode ter que ser ignorado em detrimento do ajuste do sistema para um desempenho ainda maior. Um sistema mais fortemente acoplado pode ser desejável.
Criar um mapa de componentes de um sistema de negociação algorítmico vale um artigo em si. No entanto, uma abordagem ideal é garantir que haja componentes separados para as entradas de dados de mercado históricas e em tempo real, armazenamento de dados, API de acesso a dados, backtester, parâmetros estratégicos, construção de portfólio, gerenciamento de risco e sistemas automatizados de execução.
Por exemplo, se o armazenamento de dados em uso estiver atualmente com baixo desempenho, mesmo em níveis significativos de otimização, ele poderá ser substituído com reescritas mínimas para a API de acesso a dados ou acesso a dados. Tanto quanto o backtester e componentes subseqüentes estão em causa, não há diferença.
Outro benefício dos componentes separados é que ele permite que uma variedade de linguagens de programação seja usada no sistema geral. Não há necessidade de se restringir a um único idioma se o método de comunicação dos componentes for independente de idioma. Este será o caso se eles estiverem se comunicando via TCP / IP, ZeroMQ ou algum outro protocolo independente de linguagem.
Como um exemplo concreto, considere o caso de um sistema de backtesting sendo escrito em C ++ para desempenho "processamento de números", enquanto o gerenciador de portfólio e os sistemas de execução são escritos em Python usando SciPy e IBPy.
Considerações de desempenho.
O desempenho é uma consideração significativa para a maioria das estratégias de negociação. Para estratégias de maior frequência, é o fator mais importante. "Desempenho" abrange uma ampla variedade de problemas, como velocidade de execução algorítmica, latência de rede, largura de banda, E / S de dados, simultaneidade / paralelismo e dimensionamento. Cada uma dessas áreas é coberta individualmente por grandes livros didáticos, portanto, este artigo apenas arranhará a superfície de cada tópico. A arquitetura e a escolha de idiomas serão agora discutidas em termos de seus efeitos no desempenho.
The prevailing wisdom as stated by Donald Knuth, one of the fathers of Computer Science, is that "premature optimisation is the root of all evil". This is almost always the case - except when building a high frequency trading algorithm! For those who are interested in lower frequency strategies, a common approach is to build a system in the simplest way possible and only optimise as bottlenecks begin to appear.
Profiling tools are used to determine where bottlenecks arise. Profiles can be made for all of the factors listed above, either in a MS Windows or Linux environment. There are many operating system and language tools available to do so, as well as third party utilities. Language choice will now be discussed in the context of performance.
C++, Java, Python, R and MatLab all contain high-performance libraries (either as part of their standard or externally) for basic data structure and algorithmic work. C++ ships with the Standard Template Library, while Python contains NumPy/SciPy. Common mathematical tasks are to be found in these libraries and it is rarely beneficial to write a new implementation.
One exception is if highly customised hardware architecture is required and an algorithm is making extensive use of proprietary extensions (such as custom caches). However, often "reinvention of the wheel" wastes time that could be better spent developing and optimising other parts of the trading infrastructure. Development time is extremely precious especially in the context of sole developers.
Latency is often an issue of the execution system as the research tools are usually situated on the same machine. For the former, latency can occur at multiple points along the execution path. Databases must be consulted (disk/network latency), signals must be generated (operating syste, kernal messaging latency), trade signals sent (NIC latency) and orders processed (exchange systems internal latency).
For higher frequency operations it is necessary to become intimately familiar with kernal optimisation as well as optimisation of network transmission. This is a deep area and is significantly beyond the scope of the article but if an UHFT algorithm is desired then be aware of the depth of knowledge required!
Caching is very useful in the toolkit of a quantitative trading developer. Caching refers to the concept of storing frequently accessed data in a manner which allows higher-performance access, at the expense of potential staleness of the data. A common use case occurs in web development when taking data from a disk-backed relational database and putting it into memory. Any subsequent requests for the data do not have to "hit the database" and so performance gains can be significant.
For trading situations caching can be extremely beneficial. For instance, the current state of a strategy portfolio can be stored in a cache until it is rebalanced, such that the list doesn't need to be regenerated upon each loop of the trading algorithm. Such regeneration is likely to be a high CPU or disk I/O operation.
However, caching is not without its own issues. Regeneration of cache data all at once, due to the volatilie nature of cache storage, can place significant demand on infrastructure. Another issue is dog-piling , where multiple generations of a new cache copy are carried out under extremely high load, which leads to cascade failure.
Dynamic memory allocation is an expensive operation in software execution. Thus it is imperative for higher performance trading applications to be well-aware how memory is being allocated and deallocated during program flow. Newer language standards such as Java, C# and Python all perform automatic garbage collection , which refers to deallocation of dynamically allocated memory when objects go out of scope .
Garbage collection is extremely useful during development as it reduces errors and aids readability. However, it is often sub-optimal for certain high frequency trading strategies. Custom garbage collection is often desired for these cases. In Java, for instance, by tuning the garbage collector and heap configuration, it is possible to obtain high performance for HFT strategies.
C++ doesn't provide a native garbage collector and so it is necessary to handle all memory allocation/deallocation as part of an object's implementation. While potentially error prone (potentially leading to dangling pointers) it is extremely useful to have fine-grained control of how objects appear on the heap for certain applications. When choosing a language make sure to study how the garbage collector works and whether it can be modified to optimise for a particular use case.
Many operations in algorithmic trading systems are amenable to parallelisation . This refers to the concept of carrying out multiple programmatic operations at the same time, i. e in "parallel". So-called "embarassingly parallel" algorithms include steps that can be computed fully independently of other steps. Certain statistical operations, such as Monte Carlo simulations, are a good example of embarassingly parallel algorithms as each random draw and subsequent path operation can be computed without knowledge of other paths.
Other algorithms are only partially parallelisable. Fluid dynamics simulations are such an example, where the domain of computation can be subdivided, but ultimately these domains must communicate with each other and thus the operations are partially sequential. Parallelisable algorithms are subject to Amdahl's Law, which provides a theoretical upper limit to the performance increase of a parallelised algorithm when subject to $N$ separate processes (e. g. on a CPU core or thread ).
Parallelisation has become increasingly important as a means of optimisation since processor clock-speeds have stagnated, as newer processors contain many cores with which to perform parallel calculations. The rise of consumer graphics hardware (predominently for video games) has lead to the development of Graphical Processing Units (GPUs), which contain hundreds of "cores" for highly concurrent operations. Such GPUs are now very affordable. High-level frameworks, such as Nvidia's CUDA have lead to widespread adoption in academia and finance.
Such GPU hardware is generally only suitable for the research aspect of quantitative finance, whereas other more specialised hardware (including Field-Programmable Gate Arrays - FPGAs) are used for (U)HFT. Nowadays, most modern langauges support a degree of concurrency/multithreading. Thus it is straightforward to optimise a backtester, since all calculations are generally independent of the others.
Scaling in software engineering and operations refers to the ability of the system to handle consistently increasing loads in the form of greater requests, higher processor usage and more memory allocation. In algorithmic trading a strategy is able to scale if it can accept larger quantities of capital and still produce consistent returns. The trading technology stack scales if it can endure larger trade volumes and increased latency, without bottlenecking .
While systems must be designed to scale, it is often hard to predict beforehand where a bottleneck will occur. Rigourous logging, testing, profiling and monitoring will aid greatly in allowing a system to scale. Languages themselves are often described as "unscalable". This is usually the result of misinformation, rather than hard fact. It is the total technology stack that should be ascertained for scalability, not the language. Clearly certain languages have greater performance than others in particular use cases, but one language is never "better" than another in every sense.
One means of managing scale is to separate concerns, as stated above. In order to further introduce the ability to handle "spikes" in the system (i. e. sudden volatility which triggers a raft of trades), it is useful to create a "message queuing architecture". This simply means placing a message queue system between components so that orders are "stacked up" if a certain component is unable to process many requests.
Rather than requests being lost they are simply kept in a stack until the message is handled. This is particularly useful for sending trades to an execution engine. If the engine is suffering under heavy latency then it will back up trades. A queue between the trade signal generator and the execution API will alleviate this issue at the expense of potential trade slippage. A well-respected open source message queue broker is RabbitMQ.
Hardware and Operating Systems.
The hardware running your strategy can have a significant impact on the profitability of your algorithm. This is not an issue restricted to high frequency traders either. A poor choice in hardware and operating system can lead to a machine crash or reboot at the most inopportune moment. Thus it is necessary to consider where your application will reside. The choice is generally between a personal desktop machine, a remote server, a "cloud" provider or an exchange co-located server.
Desktop machines are simple to install and administer, especially with newer user friendly operating systems such as Windows 7/8, Mac OSX and Ubuntu. Desktop systems do possess some significant drawbacks, however. The foremost is that the versions of operating systems designed for desktop machines are likely to require reboots/patching (and often at the worst of times!). They also use up more computational resources by the virtue of requiring a graphical user interface (GUI).
Utilising hardware in a home (or local office) environment can lead to internet connectivity and power uptime problems. The main benefit of a desktop system is that significant computational horsepower can be purchased for the fraction of the cost of a remote dedicated server (or cloud based system) of comparable speed.
A dedicated server or cloud-based machine, while often more expensive than a desktop option, allows for more significant redundancy infrastructure, such as automated data backups, the ability to more straightforwardly ensure uptime and remote monitoring. They are harder to administer since they require the ability to use remote login capabilities of the operating system.
In Windows this is generally via the GUI Remote Desktop Protocol (RDP). In Unix-based systems the command-line Secure SHell (SSH) is used. Unix-based server infrastructure is almost always command-line based which immediately renders GUI-based programming tools (such as MatLab or Excel) to be unusable.
A co-located server, as the phrase is used in the capital markets, is simply a dedicated server that resides within an exchange in order to reduce latency of the trading algorithm. This is absolutely necessary for certain high frequency trading strategies, which rely on low latency in order to generate alpha.
The final aspect to hardware choice and the choice of programming language is platform-independence. Is there a need for the code to run across multiple different operating systems? Is the code designed to be run on a particular type of processor architecture, such as the Intel x86/x64 or will it be possible to execute on RISC processors such as those manufactured by ARM? These issues will be highly dependent upon the frequency and type of strategy being implemented.
Resilience and Testing.
One of the best ways to lose a lot of money on algorithmic trading is to create a system with no resiliency . This refers to the durability of the sytem when subject to rare events, such as brokerage bankruptcies, sudden excess volatility, region-wide downtime for a cloud server provider or the accidental deletion of an entire trading database. Years of profits can be eliminated within seconds with a poorly-designed architecture. It is absolutely essential to consider issues such as debuggng, testing, logging, backups, high-availability and monitoring as core components of your system.
It is likely that in any reasonably complicated custom quantitative trading application at least 50% of development time will be spent on debugging, testing and maintenance.
Nearly all programming languages either ship with an associated debugger or possess well-respected third-party alternatives. In essence, a debugger allows execution of a program with insertion of arbitrary break points in the code path, which temporarily halt execution in order to investigate the state of the system. The main benefit of debugging is that it is possible to investigate the behaviour of code prior to a known crash point .
Debugging is an essential component in the toolbox for analysing programming errors. However, they are more widely used in compiled languages such as C++ or Java, as interpreted languages such as Python are often easier to debug due to fewer LOC and less verbose statements. Despite this tendency Python does ship with the pdb, which is a sophisticated debugging tool. The Microsoft Visual C++ IDE possesses extensive GUI debugging utilities, while for the command line Linux C++ programmer, the gdb debugger exists.
Testing in software development refers to the process of applying known parameters and results to specific functions, methods and objects within a codebase, in order to simulate behaviour and evaluate multiple code-paths, helping to ensure that a system behaves as it should. A more recent paradigm is known as Test Driven Development (TDD), where test code is developed against a specified interface with no implementation. Prior to the completion of the actual codebase all tests will fail. As code is written to "fill in the blanks", the tests will eventually all pass, at which point development should cease.
TDD requires extensive upfront specification design as well as a healthy degree of discipline in order to carry out successfully. In C++, Boost provides a unit testing framework. In Java, the JUnit library exists to fulfill the same purpose. Python also has the unittest module as part of the standard library. Many other languages possess unit testing frameworks and often there are multiple options.
In a production environment, sophisticated logging is absolutely essential. Logging refers to the process of outputting messages, with various degrees of severity, regarding execution behaviour of a system to a flat file or database. Logs are a "first line of attack" when hunting for unexpected program runtime behaviour. Unfortunately the shortcomings of a logging system tend only to be discovered after the fact! As with backups discussed below, a logging system should be given due consideration BEFORE a system is designed.
Both Microsoft Windows and Linux come with extensive system logging capability and programming languages tend to ship with standard logging libraries that cover most use cases. It is often wise to centralise logging information in order to analyse it at a later date, since it can often lead to ideas about improving performance or error reduction, which will almost certainly have a positive impact on your trading returns.
While logging of a system will provide information about what has transpired in the past, monitoring of an application will provide insight into what is happening right now . All aspects of the system should be considered for monitoring. System level metrics such as disk usage, available memory, network bandwidth and CPU usage provide basic load information.
Trading metrics such as abnormal prices/volume, sudden rapid drawdowns and account exposure for different sectors/markets should also be continuously monitored. Further, a threshold system should be instigated that provides notification when certain metrics are breached, elevating the notification method (email, SMS, automated phone call) depending upon the severity of the metric.
System monitoring is often the domain of the system administrator or operations manager. However, as a sole trading developer, these metrics must be established as part of the larger design. Many solutions for monitoring exist: proprietary, hosted and open source, which allow extensive customisation of metrics for a particular use case.
Backups and high availability should be prime concerns of a trading system. Consider the following two questions: 1) If an entire production database of market data and trading history was deleted (without backups) how would the research and execution algorithm be affected? 2) If the trading system suffers an outage for an extended period (with open positions) how would account equity and ongoing profitability be affected? The answers to both of these questions are often sobering!
It is imperative to put in place a system for backing up data and also for testing the restoration of such data. Many individuals do not test a restore strategy. If recovery from a crash has not been tested in a safe environment, what guarantees exist that restoration will be available at the worst possible moment?
Similarly, high availability needs to be "baked in from the start". Redundant infrastructure (even at additional expense) must always be considered, as the cost of downtime is likely to far outweigh the ongoing maintenance cost of such systems. I won't delve too deeply into this topic as it is a large area, but make sure it is one of the first considerations given to your trading system.
Choosing a Language.
Considerable detail has now been provided on the various factors that arise when developing a custom high-performance algorithmic trading system. The next stage is to discuss how programming languages are generally categorised.
Type Systems.
When choosing a language for a trading stack it is necessary to consider the type system . The languages which are of interest for algorithmic trading are either statically - or dynamically-typed . A statically-typed language performs checks of the types (e. g. integers, floats, custom classes etc) during the compilation process. Such languages include C++ and Java. A dynamically-typed language performs the majority of its type-checking at runtime. Such languages include Python, Perl and JavaScript.
For a highly numerical system such as an algorithmic trading engine, type-checking at compile time can be extremely beneficial, as it can eliminate many bugs that would otherwise lead to numerical errors. However, type-checking doesn't catch everything, and this is where exception handling comes in due to the necessity of having to handle unexpected operations. 'Dynamic' languages (i. e. those that are dynamically-typed) can often lead to run-time errors that would otherwise be caught with a compilation-time type-check. For this reason, the concept of TDD (see above) and unit testing arose which, when carried out correctly, often provides more safety than compile-time checking alone.
Another benefit of statically-typed languages is that the compiler is able to make many optimisations that are otherwise unavailable to the dynamically - typed language, simply because the type (and thus memory requirements) are known at compile-time. In fact, part of the inefficiency of many dynamically-typed languages stems from the fact that certain objects must be type-inspected at run-time and this carries a performance hit. Libraries for dynamic languages, such as NumPy/SciPy alleviate this issue due to enforcing a type within arrays.
Open Source or Proprietary?
One of the biggest choices available to an algorithmic trading developer is whether to use proprietary (commercial) or open source technologies. There are advantages and disadvantages to both approaches. It is necessary to consider how well a language is supported, the activity of the community surrounding a language, ease of installation and maintenance, quality of the documentation and any licensing/maintenance costs.
The Microsoft stack (including Visual C++, Visual C#) and MathWorks' MatLab are two of the larger proprietary choices for developing custom algorithmic trading software. Both tools have had significant "battle testing" in the financial space, with the former making up the predominant software stack for investment banking trading infrastructure and the latter being heavily used for quantitative trading research within investment funds.
Microsoft and MathWorks both provide extensive high quality documentation for their products. Further, the communities surrounding each tool are very large with active web forums for both. The software allows cohesive integration with multiple languages such as C++, C# and VB, as well as easy linkage to other Microsoft products such as the SQL Server database via LINQ. MatLab also has many plugins/libraries (some free, some commercial) for nearly any quantitative research domain.
There are also drawbacks. With either piece of software the costs are not insignificant for a lone trader (although Microsoft does provide entry-level version of Visual Studio for free). Microsoft tools "play well" with each other, but integrate less well with external code. Visual Studio must also be executed on Microsoft Windows, which is arguably far less performant than an equivalent Linux server which is optimally tuned.
MatLab also lacks a few key plugins such as a good wrapper around the Interactive Brokers API, one of the few brokers amenable to high-performance algorithmic trading. The main issue with proprietary products is the lack of availability of the source code. This means that if ultra performance is truly required, both of these tools will be far less attractive.
Open source tools have been industry grade for sometime. Much of the alternative asset space makes extensive use of open-source Linux, MySQL/PostgreSQL, Python, R, C++ and Java in high-performance production roles. However, they are far from restricted to this domain. Python and R, in particular, contain a wealth of extensive numerical libraries for performing nearly any type of data analysis imaginable, often at execution speeds comparable to compiled languages, with certain caveats.
The main benefit of using interpreted languages is the speed of development time. Python and R require far fewer lines of code (LOC) to achieve similar functionality, principally due to the extensive libraries. Further, they often allow interactive console based development, rapidly reducing the iterative development process.
Given that time as a developer is extremely valuable, and execution speed often less so (unless in the HFT space), it is worth giving extensive consideration to an open source technology stack. Python and R possess significant development communities and are extremely well supported, due to their popularity. Documentation is excellent and bugs (at least for core libraries) remain scarce.
Open source tools often suffer from a lack of a dedicated commercial support contract and run optimally on systems with less-forgiving user interfaces. A typical Linux server (such as Ubuntu) will often be fully command-line oriented. In addition, Python and R can be slow for certain execution tasks. There are mechanisms for integrating with C++ in order to improve execution speeds, but it requires some experience in multi-language programming.
While proprietary software is not immune from dependency/versioning issues it is far less common to have to deal with incorrect library versions in such environments. Open source operating systems such as Linux can be trickier to administer.
I will venture my personal opinion here and state that I build all of my trading tools with open source technologies. In particular I use: Ubuntu, MySQL, Python, C++ and R. The maturity, community size, ability to "dig deep" if problems occur and lower total cost ownership (TCO) far outweigh the simplicity of proprietary GUIs and easier installations. Having said that, Microsoft Visual Studio (especially for C++) is a fantastic Integrated Development Environment (IDE) which I would also highly recommend.
Batteries Included?
The header of this section refers to the "out of the box" capabilities of the language - what libraries does it contain and how good are they? This is where mature languages have an advantage over newer variants. C++, Java and Python all now possess extensive libraries for network programming, HTTP, operating system interaction, GUIs, regular expressions (regex), iteration and basic algorithms.
C++ is famed for its Standard Template Library (STL) which contains a wealth of high performance data structures and algorithms "for free". Python is known for being able to communicate with nearly any other type of system/protocol (especially the web), mostly through its own standard library. R has a wealth of statistical and econometric tools built in, while MatLab is extremely optimised for any numerical linear algebra code (which can be found in portfolio optimisation and derivatives pricing, for instance).
Outside of the standard libraries, C++ makes use of the Boost library, which fills in the "missing parts" of the standard library. In fact, many parts of Boost made it into the TR1 standard and subsequently are available in the C++11 spec, including native support for lambda expressions and concurrency.
Python has the high performance NumPy/SciPy/Pandas data analysis library combination, which has gained widespread acceptance for algorithmic trading research. Further, high-performance plugins exist for access to the main relational databases, such as MySQL++ (MySQL/C++), JDBC (Java/MatLab), MySQLdb (MySQL/Python) and psychopg2 (PostgreSQL/Python). Python can even communicate with R via the RPy plugin!
An often overlooked aspect of a trading system while in the initial research and design stage is the connectivity to a broker API. Most APIs natively support C++ and Java, but some also support C# and Python, either directly or with community-provided wrapper code to the C++ APIs. In particular, Interactive Brokers can be connected to via the IBPy plugin. If high-performance is required, brokerages will support the FIX protocol.
Conclusão.
As is now evident, the choice of programming language(s) for an algorithmic trading system is not straightforward and requires deep thought. The main considerations are performance, ease of development, resiliency and testing, separation of concerns, familiarity, maintenance, source code availability, licensing costs and maturity of libraries.
The benefit of a separated architecture is that it allows languages to be "plugged in" for different aspects of a trading stack, as and when requirements change. A trading system is an evolving tool and it is likely that any language choices will evolve along with it.
A Quantcademy.
Participe do portal de associação da Quantcademy que atende à crescente comunidade de traders de quantificação de varejo e aprenda como aumentar a lucratividade de sua estratégia.
Negociação Algorítmica Bem Sucedida.
Como encontrar novas ideias de estratégia de negociação e avaliá-las objetivamente para o seu portfólio usando um mecanismo de backtesting personalizado no Python.
Comércio Algorítmico Avançado.
Como implementar estratégias de negociação avançadas usando análise de séries temporais, aprendizado de máquina e estatísticas Bayesianas com R e Python.

Python genetic algorithm for trading system


Algoritmos genéticos são algoritmos que imitam a seleção natural. Este é um algoritmo evolutivo simples que negocia ações de topo. Essencialmente, as estratégias de momento são geradas aleatoriamente. Com base em como essas estratégias seriam executadas durante um período de tempo (30 dias), os melhores desempenhos, ou pais, são selecionados. Usando os atributos desses pais, geram-se novos algoritmos que possuem atributos semelhantes aos pais. Este processo é então repetido. As negociações são feitas usando o algoritmo geral de melhor desempenho.
Embora as estratégias que estão sendo desenvolvidas sejam básicas e não tenham um ótimo desempenho, isso é apenas um exemplo. Eu acho que há muitas maneiras de se estender isso, como se afastar do momento ou importar dados relevantes de um arquivo CSV. Existem também algumas variáveis ​​que podem ser facilmente ajustadas, que podem levar a melhores resultados, e o código é comentado. Clone isso, brinque com isso e deixe-me saber o que você pensa!
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis ​​por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
obrigado a sua partilha!
some interesting reference:
genetic programming libraries in Python:
Pyvolution: Estrutura de algoritmos evolutivos muito modular e muito extensível, com documentação completa, Apache License 2.0.
deap: Algoritmos Evolutivos Distribuídos em Python, GNU Lesser GPL.
pySTEP: Python Digitado Fortemente gEnetic Programming, MIT License.
PyRobot: Algoritmos Evolutivos (GA + GP) Módulos, Código Aberto.
PonyGEa pequena, uma implementação de arquivo de origem da GE, com um aplicativo de demonstração gráfica interativa GNU GPL v3.
inspyred: A computação de inspiração biológica engloba uma ampla gama de algoritmos, incluindo computação evolutiva, inteligência de enxames e redes neurais, GNU GPL v3.
DRP: Dirigido Ruby Programming, Genetic Programming & amp; Biblioteca de Evolução Gramaticais, GNU GPL.
Jonathan Kinlay has been posting recently about the practices and pitfalls of genetic programming for algorithmic trading. I attempted a system based on it about ten years ago, but never really got anywhere.
I do know that for nonlinear global optimization problems, we had good results (in derivatives model fitting) with particle swarm differential evolution. Perhaps that could be adapted to trading system search problems.
Ty for sharing that is actually my area of research, using a few years of historical data I used to need over 1 day to compute a model I wonder how would quantopian and python deal with big models.
We have tried genetic programming and the results when adjusted for data snooping are terrible. For starters who are not familiar with data mining bias see this blog: priceactionlab/Blog/2012/06/fooled-by-randomness-through-selection-bias/
@SImon: Dr. Kinlay makes a few good points but the system he posts at the end of his blog has 240 trades in nearly 25 years. The small number of trades is one indication of an extreme fit. The point is that if his system was a top performer of a genetic programming algorithm, then it is probably random even if the out of sample performance looks nice because his selection ignores all those systems with bad out of sample performance.
I agree 100%, I think it's mostly a dead end, but perhaps differential evolution of deep neural nets might fit real relationships? Super tricky to avoid mining bias though, so many degrees of freedom. Marco de Prado's technique for backtest overfitting might help.
GP is just an optimization algorithm, it is as good as its fitness function and the model you are trying to optimize. If the model is over fitting then your fitness function is not doing its job properly if the model is not evolving then the strategy being optimized is not good. I see GP more as a tool-box.
Very nice Gus. Plenty of food for thought here. Been looking at Genotick recently - written in Java and so a bit of a slog for me. But if you are adept at Java you might like to take a look. Genotick.
I am trying to do something similar using genetic programming, but trying to create a more turn-key web app approach.
Would love some feedback, as I would like to expand the data series and techniques that are available to the framework.
also trying to learn Python to do some Quantopian stuff (I am a Java guy).
Desculpe, algo deu errado. Tente novamente ou entre em contato enviando feedback.
Você enviou com sucesso um ticket de suporte.
Nossa equipe de suporte entrará em contato em breve.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian.
Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis ​​por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian.
Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis ​​por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.

No comments:

Post a Comment